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F6-87-NC

Sample # Type l Comments
Fe Mn CRUSTS
D8-2 BULK (0-24) Type 1 CC,XRD
D8-7A BULK CRUST (0-20) T3 CC, XRD, REE
D8-4A CRUST LAYER (0-16) T2 CC, XRD
Porous-Mn cemented SS; L 1
D8-4B CRUST LAYER (16-27) T2 CC, XRD
massive, dense; laminated-
wavy L 2&3
D8-4C CRUST LAYER (27-45) T2 CC,XRD
massive,dense; massive,porous
L 4&5
D8-6A CRUST LAYER (0-5) T3 CC, PGE,AU, REE, XRD
laminated
D8-6B CRUST LAYER (5-13) T3 CC, PGE,AU, REE, XRD
laminated
D8-6C CRUST LAYER (13-20) T3 CC, PGE,AU, REE, XRD
laminated--most dense _
D8-8C BULK CRUST (0-23) T2+ CC, REE, XRD
D8-8C CRUST LAYER (0-6) T34 XRD
D8-8C CRUST LAYER (6-16) 7}z XRD
D8-8C CRUST LAYER (16-23) 7= +i XRD
D8-9F BULK CRUST T4 CC, REE, XRD
SUBSTRATE
D8-2B MUDSTONE (MN FREE) 0C, XRD
/ D8-9A MUDSTONE OC, REE, XRD
| |D8-9B BOXWORK BLADES OC, REE, XRD
J D8-9C LT BROWN CLAY INFILLING XRD
/ '\\ BOXWORK
| | D8-9D WAXY COHERENT SEDIMENT XRD
P NEARER TO BOXWORK
! | D8-9E SEDIMENT FURTHER AWAY XRD
B, FROM BOXWORK
D8-6D Mn dendritic mudstone OC, XRD
‘ D8-7B Mn free mudstone OC, XRD
\ D8-384 YELLOW BOXWORK XRD
D§-8B CREAM BOXWORK XRD
D8-8B-1 [D%-%A(2) ] BULK BOXWORK 0C, REE, XRD
% D8-8D | MUDSTONE __ OC, REE, XRD .
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